Coupled transverse vibration modeling of drillstrings subjected to torque and spatially varying axial
نویسنده
چکیده
Predicting and mitigating unwanted vibration of drillstrings is an important subject for oil drilling companies. Uncontrolled vibrations cause premature failure of the drillstring and associated components. The drillstring is a long slender structure that vibrates in three primary coupled modes: torsional, axial and transverse. Among these coupled modes, the transverse mode is the major cause of drillstring failures and wellbore washout. Modal analysis of drillstrings reveals critical frequencies and helps drillers to avoid running the bit near critical modes. In this article, the coupled orthogonal modes of transverse vibration of a drillstring in the presence of torque and spatially varying axial force (due to mud hydrostatic effect, self-weight and hook load) are derived and the mode shapes and natural frequencies are determined through the expanded Galerkin method. The results are verified by the nonlinear finite element method. Modal mass participation factor, which represents how strongly a specific mode contributes to the motion in a certain direction, is used to determine the appropriate number of modes to retain so that computational efficiency can be maximized.
منابع مشابه
Drill string Vibration Modeling Including Coupling Effects
Abstract: The governing equations of motion for a drill string considering coupling between axial, lateral and torsional vibrations are obtained using a Lagrangian approach. The result leads to a set of non-linear equations with time varying coefficients. A fully coupled model for axial, lateral, and torsional vibrations of drill strings is presented. The bit/formation interactions are assumed ...
متن کاملAxial and Transverse Vibration of SWBNNT System Coupled Pasternak Foundation Under a Moving Nanoparticle Using Timoshenko Beam Theory
In this study, a semi analytical method for transverse and axial vibration of single-walled boron nitride nanotube (SWBNNT) under moving a nanoparticle is presented. The surrounding elastic medium as Pasternak foundation and surface stress effect are included in the formulations of the proposed model. Using Timoshenko beam theory (TBT), Hamilton’s principle and nonlocal piezoelasticity theory, ...
متن کاملEffect of Winkler Foundation on Radially Symmetric Vibrations of Bi-Directional FGM Non-Uniform Mindlin’s Circular Plate Subjected to In-Plane Peripheral Loading
An analysis has been presented of the effect of elastic foundation and uniform in-plane peripheral loading on the natural frequencies and mode shapes of circular plates of varying thickness exhibiting bi-directional functionally graded characteristics, on the basis of first order shear deformation theory. The material properties of the plate are varying following a power-law in both the radial ...
متن کاملFree Vibration Analysis of Quintic Nonlinear Beams using Equivalent Linearization Method with a Weighted Averaging
In this paper, the equivalent linearization method with a weighted averaging proposed by Anh (2015) is applied to analyze the transverse vibration of quintic nonlinear Euler-Bernoulli beams subjected to axial loads. The proposed method does not require small parameter in the equation which is difficult to be found for nonlinear problems. The approximate solutions are harmonic oscillations, whic...
متن کاملAn Analytical Solution on Size Dependent Longitudinal Dynamic Response of SWCNT Under Axial Moving Harmonic Load
The main purposes of the present work are devoted to the investigation of the free axial vibration, as well as the time-dependent and forced axial vibration of a SWCNT subjected to a moving load. The governing equation is derived through using Hamilton's principle. Eringen’s nonlocal elasticity theory has been utilized to analyze the nonlocal behaviors of SWCNT. A Galerkin method based on a clo...
متن کامل